Uber永久定位系统实时数据分析过程实践!
或者使用Spark SQL:
![]() 使用Zeppelin notebook中的Angular和Google Maps脚本,我们可以在地图上显示集群中心标记和最新的5000个旅行的位置,如下可看出最受欢迎的位置,比如位于曼哈顿的0、3、9。 ![]() 集群0最高搭乘次数出现在哪个小时?
![]() 一天中的哪个小时和哪个集群的搭乘次数最多?
![]() 按日期时间显示uber行程的集群计数
![]() 总结 本文涉及的知识点有Spark结构化流应用程序中的Spark Machine Learning模型、Spark结构化流与MapR-ES使用Kafka API摄取消息、SparkStructured Streaming持久化保存到MapR-DB,以持续快速地进行SQL分析等。此外,上述讨论过的用例体系结构所有组件都可与MapR数据平台在同一集群上运行。 ![]() 代码: 你可以从此处下载代码和数据以运行这些示例:https://github.com/caroljmcdonald/mapr-spark-structuredstreaming-uber 机器学习notebook的Zeppelin查看器:https://www.zepl.com/viewer/github/caroljmcdonald/mapr-spark-structuredstreaming-uber/blob/master/notebooks/SparkUberML.json Spark结构化流notebook的Zeppelin查看器:https://www.zepl.com/viewer/github/caroljmcdonald/mapr-spark-structuredstreaming-uber/blob/master/notebooks/SparkUberStructuredStreaming.json SparkSQL notebook的Zenpelin查看器:https://www.zepl.com/viewer/github/caroljmcdonald/mapr-spark-structuredstreaming-uber/blob/master/notebooks/SparkUberSQLMapR-DB.json 此代码包含在MapR 6.0.1沙箱上运行的说明,这是一个独立的VM以及教程和演示应用程序,可让用户快速使用MapR和Spark。 (编辑:衡水站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |