加入收藏 | 设为首页 | 会员中心 | 我要投稿 衡水站长网 (https://www.0318zz.com/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 站长资讯 > 传媒 > 正文

火爆的图机器学习

发布时间:2021-03-04 14:22:43 所属栏目:传媒 来源:互联网
导读:而新的一年已经过去了一个月,那么2020年图机器学习的火热还能持续吗?又将有哪些新的研究趋势呢?即将于4月份在埃塞俄比亚举办的ICLR 2020是一个能够很好反映这些问题的会议。 这个会议是由深度学习三巨头之二的 Yoshua Bengio 和 Yann LeCun 牵头创办,旨






而新的一年已经过去了一个月,那么2020年图机器学习的火热还能持续吗?又将有哪些新的研究趋势呢? 即将于4月份在埃塞俄比亚举办的ICLR 2020是一个能够很好反映这些问题的会议。

这个会议是由深度学习三巨头之二的 Yoshua Bengio 和 Yann LeCun 牵头创办,旨在关注有关深度学习各个方面的前沿研究。

在ICLR 2020中共有150篇投稿与图机器学习有关,而其中有近1/3的论文都被录用了,这也说明图机器学习火热依旧。

我们不妨将这些论文按照理论、应用、知识图谱、图嵌入来划分,从而一窥图机器学习在2020年的研究趋势。

注:文中涉及论文,可关注雷锋网「AI科技评论」微信公众号,并后台回复「2020年GML趋势」下载。

1、GNN理论知识会更加扎实

从目前的形式看,图机器学习的领域在成熟的康庄大道上越走越远,但是图神经网络还有很多进步空间。过去的一年图神经网络不断改进,因此诞生了许多理论研究,在我们对2020年预测之前,先来简单梳理一下图神经网络的重要理论成果吧!

What graph neural networks cannot learn: depth vs width

https://openreview.net/forum?id=B1l2bp4YwS

洛桑联邦理工学院 Andreas Loukas 的这篇论文,无论在影响力、简洁性还是对理论理解的深度上,无疑是论文中的典范。

它表明,当我们用GNN计算通常的图问题时,节点嵌入的维数(网络的宽度,w)乘以层数(网络的深度,d)应该与图n的大小成正比,即dW=O(n)。

但现实是当前的GNN的许多实现都无法达到此条件,因为层数和嵌入的尺寸与图的大小相比还不够大。另一方面,较大的网络在实际操作中不合适的,这会引发有关如何设计有效的GNN的问题,当然这个问题也是研究人员未来工作的重点。需要说明的是,这篇论文还从80年代的分布式计算模型中汲取了灵感,证明了GNN本质上是

 

而新的一年已经过去了一个月,那么2020年图机器学习的火热还能持续吗?又将有哪些新的研究趋势呢? 即将于4月份在埃塞俄比亚举办的ICLR 2020是一个能够很好反映这些问题的会议。

这个会议是由深度学习三巨头之二的 Yoshua Bengio 和 Yann LeCun 牵头创办,旨在关注有关深度学习各个方面的前沿研究。

在ICLR 2020中共有150篇投稿与图机器学习有关,而其中有近1/3的论文都被录用了,这也说明图机器学习火热依旧。

我们不妨将这些论文按照理论、应用、知识图谱、图嵌入来划分,从而一窥图机器学习在2020年的研究趋势。

注:文中涉及论文,可关注雷锋网「AI科技评论」微信公众号,并后台回复「2020年GML趋势」下载。

1、GNN理论知识会更加扎实

从目前的形式看,图机器学习的领域在成熟的康庄大道上越走越远,但是图神经网络还有很多进步空间。过去的一年图神经网络不断改进,因此诞生了许多理论研究,在我们对2020年预测之前,先来简单梳理一下图神经网络的重要理论成果吧!

What graph neural networks cannot learn: depth vs width

https://openreview.net/forum?id=B1l2bp4YwS

洛桑联邦理工学院 Andreas Loukas 的这篇论文,无论在影响力、简洁性还是对理论理解的深度上,无疑是论文中的典范。

它表明,当我们用GNN计算通常的图问题时,节点嵌入的维数(网络的宽度,w)乘以层数(网络的深度,d)应该与图n的大小成正比,即dW=O(n)。

但现实是当前的GNN的许多实现都无法达到此条件,因为层数和嵌入的尺寸与图的大小相比还不够大。另一方面,较大的网络在实际操作中不合适的,这会引发有关如何设计有效的GNN的问题,当然这个问题也是研究人员未来工作的重点。需要说明的是,这篇论文还从80年代的分布式计算模型中汲取了灵感,证明了GNN本质上是而新的一年已经过去了一个月,那么2020年图机器学习的火热还能持续吗?又将有哪些新的研究趋势呢? 即将于4月份在埃塞俄比亚举办的ICLR 2020是一个能够很好反映这些问题的会议。

这个会议是由深度学习三巨头之二的 Yoshua Bengio 和 Yann LeCun 牵头创办,旨在关注有关深度学习各个方面的前沿研究。

在ICLR 2020中共有150篇投稿与图机器学习有关,而其中有近1/3的论文都被录用了,这也说明图机器学习火热依旧。

我们不妨将这些论文按照理论、应用、知识图谱、图嵌入来划分,从而一窥图机器学习在2020年的研究趋势。

注:文中涉及论文,可关注雷锋网「AI科技评论」微信公众号,并后台回复「2020年GML趋势」下载。

1、GNN理论知识会更加扎实

从目前的形式看,图机器学习的领域在成熟的康庄大道上越走越远,但是图神经网络还有很多进步空间。过去的一年图神经网络不断改进,因此诞生了许多理论研究,在我们对2020年预测之前,先来简单梳理一下图神经网络的重要理论成果吧!

What graph neural networks cannot learn: depth vs width

https://openreview.net/forum?id=B1l2bp4YwS

洛桑联邦理工学院 Andreas Loukas 的这篇论文,无论在影响力、简洁性还是对理论理解的深度上,无疑是论文中的典范。

它表明,当我们用GNN计算通常的图问题时,节点嵌入的维数(网络的宽度,w)乘以层数(网络的深度,d)应该与图n的大小成正比,即dW=O(n)。

但现实是当前的GNN的许多实现都无法达到此条件,因为层数和嵌入的尺寸与图的大小相比还不够大。另一方面,较大的网络在实际操作中不合适的,这会引发有关如何设计有效的GNN的问题,当然这个问题也是研究人员未来工作的重点。需要说明的是,这篇论文还从80年代的分布式计算模型中汲取了灵感,证明了GNN本质上是

(编辑:衡水站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    热点阅读