加入收藏 | 设为首页 | 会员中心 | 我要投稿 衡水站长网 (https://www.0318zz.com/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 站长资讯 > 传媒 > 正文

Python完整代码带你一文看懂抽样

发布时间:2021-03-16 15:11:54 所属栏目:传媒 来源:互联网
导读:制。很多时候抽样从数据采集端便已经开始,例如做社会调查必须采用抽样方法进行研究,因为根本无法对所有人群做调查。 时效性要求。抽样带来的是以局部反映全局的思路,如果方法正确,可以以极小的数据计算量来实现对整体数据的统计分析,在时效性上会大大增
  • 制。很多时候抽样从数据采集端便已经开始,例如做社会调查必须采用抽样方法进行研究,因为根本无法对所有人群做调查。
  • 时效性要求。抽样带来的是以局部反映全局的思路,如果方法正确,可以以极小的数据计算量来实现对整体数据的统计分析,在时效性上会大大增强。

如果存在上述条件限制或有类似强制性要求,那么抽样工作仍然必不可少。

但是在当前数据化运营的大背景下,数据计算资源充足、数据采集端可以采集更多的数据并且可以通过多种方式满足时效性的要求,抽样工作是否就没有必要了?其实不是的,即使上述限制条件都满足,还有很多场景依然需要通过抽样方法来解决具体问题。

  • 通过抽样来实现快速的概念验证。数据工作中可能会包括创新性或常识性项目,对于这类项目进行快速验证、迭代和交付结论往往是概念验证的关键,通过抽样方法带来的不仅是计算效率的提升,还有前期数据准备、数据预处理、算法实现等各个方面的开发,以及服务器、硬件的配套方案的部署等内容的可行性、简单化和可操作性。
  • 通过抽样来解决样本不均衡问题。通过欠抽样、过抽样以及组合/集成的方法解决不均衡的问题,这个过程就用到了抽样方法。
  • 无法实现对全部样本覆盖的数据化运营场景。典型场景包括市场研究、客户线下调研分析、产品品质检验、用户电话满意度调查等,在这些场景下无法实现对所有样本的采集、分析、处理和建模。
  • 定性分析的工作需要。在定性分析工作中,通常不需要定量分析时的完整假设、精确数据和复杂统计分析过程,更多的是采用访问、观察和文献法收集资料并通过主观理解和定性分析找到问题答案,该过程中主要依靠人自身的能力而非密集的计算机能力来完成研究工作。如果不使用抽样方法,那么定性分析将很难完成。

(编辑:衡水站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    热点阅读