谁来保护我的“不被遗忘权”?
采样后,会以与 WRS 相同的方式对每个模拟进行扰动处理。 3) 基于群体的优化(Population-Based Optimization,PBO):受基于人群的训练(Population-Based Training ,PBT)方法启发[7],PBO 首先根据平均成本对所有模拟进行排序,并找到成本最低的最优 K_best 模拟。然后,通过将剩余的 K-K_best 模拟替换为 K_best 模拟的副本,并对其进行替换取样后再进行利用。最后,仍然以与 WRS 相同的方式对 K_best 模拟进行扰动处理。 3.2.2 实验分析 作者使用由 Allegro Hand 搭配 Kuka IIWA7 的机械手臂,通过仿真和真实世界的实验来评估本文提出的方法的性能。在仿真实验中,首先用手跟踪操作系统采集手部目标的操纵轨迹,然后通过离线运行本文提出的算法来评估姿态估计误差。对于真实世界的实验,作者使用 PoseRBPF[8],一种最新的基于 RGB-D 的粒子滤波的姿态估计算法来获得物体的初始和最终姿态,同时将这些初始和最终目标姿态视为真实值,并将最终姿态与本文提出的算法预测的姿态进行比较。 作者将 4 指 16 自由度的 Allegro Hand 安装在 7 自由度 Kuka IIWA7 机器人手臂上。为了获得真实世界中的接触反馈,将 SynTouch BioTac 传感器连接到每个指尖。 实验中使用耶鲁 - 哥伦比亚大学 - 伯克利分校(Yale-Columbia-Berkeley,YCB)对象数据集中的 3 个对象(垃圾邮件罐、泡沫砖和玩具香蕉),以及文献 [9] 中发布的数据集中获得的模型、纹理和点云。之所以选择这些物体,是因为它们适合 Allegro Hand 的大小,而且足够轻,因此可以形成坚固的精密抓握(作者清空了垃圾邮件罐,以减轻其重量)。 对于每一个目标对象,在模拟实验和真实世界的实验中,作者给出了两种操作轨迹的演示:1)用手指抓握和手内物体旋转来拾取和放置,以及 2)相同的操作但在抓取过程中指尖断开并重新建立接触(手指转动)。演示给出了总共 24 条轨迹,用于模拟和真实世界实验的分析。在这两种操作的轨迹类型中,目标对象都会因惯性力和与工作台的推力接触而发生平移和旋转滑动。每个轨迹持续一分钟左右。假设可以在大约 30Hz 的频率下运行姿态估计算法,最终得到的每个轨迹总共大约 2k 帧。除了本文建议的优化器(WRS、REPS、PBO),作者还评估了以下两个基线方法:开环(Open Loop,OLP)和标识(Identity,EYE)。OLP 使用 1 个模拟来跟踪对象的姿势。EYE 使用一组有噪声的初始姿态进行初始化,并且总是选择成本最低的模拟姿态,但它不执行任何重新采样或优化器更新处理。最后,本文使用平均距离偏差(Average Distance Deviation,ADD)作为评估指标。ADD 计算真实姿势和预测姿势的对象点云中相应点之间的平均距离。
图 11 给出模拟环境中的实验结果。其中,黑色垂直线的长度表示 1 个标准偏差。优化方法通常具有较低的平均值和方差,但它们的相对排序取决于初始姿态噪声的大小。REPS 和 PBO 分别在 5.8mm 和 5.9mm 的中等噪声条件下获得了最佳的 ADD 性能。由图 11 可知,ADD 随着初始姿态误差的增加而增大,而基于优化器方法的 ADD 值相对较小。虽然 EYE 有时可以获得与使用优化器的方法相当的效果,但后者通常具有较小的误差方差和较大的误差。在中等噪声的情况下,REPS 和 PBO 的最优 ADD 值分别为 5.8mm 和 5.9mm。 此外,作者还增加了模拟次数 K(本文实验中 K=40)。当 K 值足够大,那么真实的初始姿态很有可能在一组仿真中得到充分的表示,之后通过优化代价函数就能够找到这个正确的姿态进行仿真。 为了对初始对象姿态进行采样,作者分别对平移和旋转的状态进行采样。其中,平移从各向同性正态分布中采样,而旋转采样通过在 so(3)中绘制零均值、各向同性切线向量来实现,之后将其应用于平均旋转中。 SO(3)是包含旋转矩阵 R 的一种特殊正交群,一般称之为三维旋转群。在三维空间中,三维旋转群组表示能在合成算子的作用下,围绕原点旋转的群组。旋转能保持被旋转向量的长度和相对矢量方向,同时是线性的。在机器人学中,这种旋转十分重要,它能标志刚体在三维空间中的旋转:刚体精确地要求在运动时保持刚体内部的距离、角度和相对方向,否则,就不能能称为刚体。 为了解决第二个问题,作者提出使用无导数、基于样本的优化算法在姿态跟踪过程中调整模拟和真实世界的动力学之间存在的不匹配。具体地说,在每个 T 时间步长之后,将在这个窗口期间所有模拟的平均成本,以及模拟状态、参数传递给指定的优化器。优化器使用自己更新的参数确定下一组仿真。下一个集合中的模拟是从当前集合的模拟中取样的,并对模拟参数和对象姿态添加一些扰动。这种探索过程保持了仿真的多样性,防止了由于观测噪声而陷入次优的仿真参数或状态。 最后,为了优化 K 模拟的参数,使其模拟状态更接近真实世界,作者提出并评估了三个无导数、基于样本的优化器。
1)加权重采样(Weighted Resampling ,WRS): WRS 基于现有的模拟状态 s^(1:K)构建了一个概率质量函数(Probability Mass Function,PMF),并从该分布中抽取 K 次替换,以形成下一组模拟。为了形成 PMF,WRS 在模拟成本上应用 softmax: (编辑:衡水站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |